Understanding neurodynamical systems via Fuzzy Symbolic Dynamics
نویسندگان
چکیده
Neurodynamical systems are characterized by a large number of signal streams, measuring activity of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or activity of simulated neurons. Various basis set decomposition techniques are used to analyze such signals, trying to discover components that carry meaningful information, but these techniques tell us little about the global activity of the whole system. A novel technique called Fuzzy Symbolic Dynamics (FSD) is introduced to help in understanding of the multidimensional dynamical system's behavior. It is based on a fuzzy partitioning of the signal space that defines a non-linear mapping of the system's trajectory to the low-dimensional space of membership function activations. This allows for visualization of the trajectory showing various aspects of observed signals that may be difficult to discover looking at individual components, or to notice otherwise. FSD mapping can be applied to raw signals, transformed signals (for example, ICA components), or to signals defined in the time-frequency domain. To illustrate the method two FSD visualizations are presented: a model system with artificial radial oscillatory sources, and the output layer (50 neurons) of Respiratory Rhythm Generator (RRG) composed of 300 spiking neurons.
منابع مشابه
Fuzzy Symbolic Dynamics for Neurodynamical Systems
Neurodynamical systems are characterized by a large number of signal streams, measuring activity of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or concentration of radioactive traces (PET) in different parts of the brain. Various basis set decomposition techniques that try to discover components that carry meaningful in...
متن کاملPerception Based Processing of NL
Extended Abstract 1. It is common practice in theoretical linguistics, formal semantics and cognitive mod-eling to identify real world entities with the (symbolic) structures that represent them. Some of the problems in logics and linguistics that these models encounter, are due to the (crisp) declarative formats of (symbolic, compositional, propositional) representations employed, and the (rul...
متن کاملContext-Dependent Processing of Spatiotemporal Patterns Based on Interaction Between Neurodynamical Systems
Dynamics of traditional neural network models are generally time-invariant. For that reason, they have limitations in contextdependent processing. We present a new method, dynamic desensitization, of varying neurodynamics continuously and construct a basic model of interaction between neurodynamical systems. This model comprises two nonmonotone neural networks storing sequential patterns as tra...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملOptimal Control via Integrating the Dynamics of Magnetorheological Dampers and Structures
Magnetorheological (MR) dampers have the advantage of being tuned by low voltages. This has attracted many researchers to develop semi-active control of structures in theory and practice. Most of the control strategies first obtain the desired forces of dampers without taking their dynamics into consideration and then determine the input voltages according to those forces. As a result, these st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2010